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The ability to map causal interactions underlying genetic control and cellular signal-
ing has led to increasingly accurate models of the complex biochemical networks that
regulate cellular function. These network models provide deep insights into the organi-
zation, dynamics, and function of biochemical systems,for example by revealing genetic
control pathways involved in disease. However, the traditional representation of bio-
chemical networks as binary interaction graphs fails to accurately represent an impor-
tant dynamical feature of these multivariate systems: some pathways propagate control
signals much more effectively than do others. Such heterogeneity of interactions reflects
canalization—the system is robust to dynamical interventions in redundant pathways,
but responsive to interventions in effective pathways. Here, we introduce the effective
graph, a weighted graph that captures the nonlinear logical redundancy present in bio-
chemical network regulation, signaling, and control. Using 78 experimentally-validated
models derived from systems biology, we demonstrate that: (a) redundant pathways are
prevalent in biological models of biochemical regulation, (b) the effective graph pro-
vides a probabilistic but precise characterization of multivariate dynamics in a causal
graph form, and (c) the effective graph provides an accurate explanation of how dynam-
ical perturbation and control signals, such as those induced by cancer drug therapies,
propagate in biochemical pathways. Overall, our results indicate that the effective graph
provides an enriched description of the structure and dynamics of networked multivari-
ate causal interactions. We demonstrate that it improves explainability, prediction, and
control of complex dynamical systems in general, and biochemical regulation in partic-
ular [1].
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Fig. 1. A. The interaction graph for the Arabidopsis Thaliana BN [2]. B. The effective graph for
the Arabidopsis Thaliana BN, in which edge thickness denotes effectiveness, with fully canalized
edges shown in dashed red. Node color intensity denotes the node effective out-degree; green
nodes denote cases of null effective out-degree. C. The effective graph for the BN model of
ER+ breast cancer [4], in which edge thickness denotes its effectiveness, thresholded to show
only effectiveness edges ei j > 0.4 for ei j ∈ [0,1]. D. Ratio of the number of weakly connected
components to network size in relation to the effective edge threshold for a variety of biochemical
BN. The ER+ breast cancer (orange), leukemia (blue), and Arabidopsis thaliana (green) networks
shown highlighted. E. Edge effectiveness of the 240 incoming edges (interactions) to 40 automata
with degree k = 6 in Cell Collective [3] models (green) compared to a bias-matched sample of
random Boolean automata (pink).


