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The ability to map causal interactions underlying genetic control
and cellular signaling has led to increasingly accurate models of
the complex biochemical networks that regulate cellular function.
These network models provide deep insights into the organiza-
tion, dynamics, and function of biochemical systems: for example,
by revealing genetic control pathways involved in disease. How-
ever, the traditional representation of biochemical networks as
binary interaction graphs fails to accurately represent an impor-
tant dynamical feature of these multivariate systems: some path-
ways propagate control signals much more effectively than do
others. Such heterogeneity of interactions reflects canalization—
the system is robust to dynamical interventions in redundant
pathways but responsive to interventions in effective pathways.
Here, we introduce the effective graph, a weighted graph that
captures the nonlinear logical redundancy present in biochemical
network regulation, signaling, and control. Using 78 experimen-
tally validated models derived from systems biology, we demon-
strate that 1) redundant pathways are prevalent in biological
models of biochemical regulation, 2) the effective graph provides
a probabilistic but precise characterization of multivariate dynam-
ics in a causal graph form, and 3) the effective graph provides an
accurate explanation of how dynamical perturbation and control
signals, such as those induced by cancer drug therapies, propa-
gate in biochemical pathways. Overall, our results indicate that
the effective graph provides an enriched description of the struc-
ture and dynamics of networked multivariate causal interactions.
We demonstrate that it improves explainability, prediction, and
control of complex dynamical systems in general and biochemical
regulation in particular.

biochemical regulation | Boolean network | canalization |
complex networks | complex networks

Increasing evidence indicates that nonlinear interactions
between biochemical variables—such as cell signaling, protein

interactions, and genetic regulation and suppression—are per-
vasive (1–5), yet linear models of biochemical regulation fail to
capture these key features of network causality (6). The simplest
way to model such causal interdependent nonlinear dynamics
is with multivariate discrete dynamical systems, also known as
automata networks. Boolean networks (BNs), for instance, are
canonical models of complex systems that exhibit a wide range
of dynamical behaviors (3, 7). They have been successfully used
to reveal insights into the dynamics of biochemical regulation
(8), cell signaling (9), metabolism (10), anticancer drug response
(11), and neuronal action potentials (12), among other things
(13). In addition, BNs provide a convenient modeling framework
to explore general properties of complex systems, such as self-
organization, criticality, causality, canalization, robustness, and
evolvability (3, 14–19).

The success of BNs can be attributed largely to three fea-
tures of these models (7, 13, 20, 21): 1) qualitative thresholds

to measure transitions in concentration/expression of biochem-
ical molecules in experimental data without the need for pre-
cise parameter estimation; 2) interaction graphs that synthe-
size complex multivariate dynamics to reveal the topology of
the causal organization of biological systems; and 3) discrete
dynamics that facilitate the prediction of critical behavior, self-
organization, robustness, evolvability, and controllability. The
first feature makes BNs very useful for estimating predictive
systems biology models from data, especially because many
processes in biology—such as gene expression and immune or
neuron activation—are characterized by switch-like transitions
between the presence or absence of a biochemical molecule or
signal (13, 21). The second and third features of BNs make them
ideal models to explore the interplay between the organization
and the dynamics of complex systems (22, 23). Traditionally,
the organization and dynamics of BNs are captured by gen-
eral probabilistic parameters of the system variables (e.g., the
mean number of interactions between variables or mean node
bias) that are used to predict features of system-wide behavior,
such as the transition from order to chaos (14, 18). Interac-
tions between BN variables are usually represented as directed
graphs, with arrows indicating when one node variable is an
input to the logical rules governing another node variable. Thus,
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interaction graphs treat all inputs to a variable with equal impor-
tance, even though each input may have a weaker or stronger
role in determining state transitions.

In reality, the states of almost all biochemical node variables
are robust to dynamic perturbations from many of their input
variables but highly responsive to just a few (3, 19). Such dynam-
ical redundancy is a ubiquitous hallmark of the third feature
of BNs that has been used to study canalization in biological
complexity (17, 24)—a concept Waddington (25) introduced to
characterize the mechanisms organisms use to buffer develop-
ment, regulation, and evolution against perturbations. Indeed,
the presence of canalization can drastically alter the functional
interaction topology of BNs, with profound consequences to the
stability and controllability of biological systems (17, 20, 24).

To better capture the functionally relevant pathways of BN
models of biochemical regulation and signaling, we introduce
the effective graph. It uses a measure of collective canaliza-
tion to take into account nonlinear effects present when several
inputs are needed to regulate a variable. This way, the effec-
tive graph integrates all of the dynamical redundancy present
in BN dynamics, thus revealing the most important interactions
and pathways in determining state transitions. Through an anal-
ysis of 78 experimentally validated biological models across a
wide range of different biochemical systems and cell types (SI
Appendix, section 2), we show that interactions in biological net-
works are on average much less effective at generating state
transitions than interactions in random Boolean automata. For
instance, in gene regulation, this means that a gene on its own
is less likely to regulate the expression of another gene it inter-
acts with than what would be expected from the set of possible
gene–gene interactions.

The effective graph provides a probabilistic characterization of
multivariate interactions and dynamics in a causal graph form. It
also captures how conditioning the system on known input states,
such as when administering a drug intervention, can modify the
remaining biochemical interactions. The conditional effective
graph thus provides a mechanistic explanation for how con-
trol propagates through biochemical models and how causal,
nonlinear, microlevel interactions integrate to define macrolevel
biological function. We leverage this analytical tool to study a
model of signal transduction in ER+ breast cancer (26) to reveal
why and how certain drugs drive cancer cells to proliferate or
die and identify the modular pathway dynamics that facilitate or
hinder this control.

Finally, the redundancy observed in BN models from systems
biology also reveals that only a fraction of causal interactions is
typically needed to determine convergence to dynamical attrac-
tors, which represent biological function in these models. This
suggests that the regulatory dynamics of biological networks are
robust to random dynamical perturbations yet controllable via
the most effective pathways revealed by the effective graph. To
demonstrate this observation, we show that the effective graph
is consistently better than the original interaction graph at pre-
dicting the impact of dynamical perturbations across random net-
works, a model of floral organ specification in the flowering plant
Arabidopsis thaliana (27, 28), and the ER+ breast cancer model
(26). Given the widespread applicability of BNs, our framework
opens a promising research direction in the control of complex
dynamical systems and can facilitate the design of interventions in
systems biology models, especially those for development and dis-
ease. By synthesizing structure and dynamics into a single-graph
formalism, the effective graph increases the predictability and
explainability of actionable models of biochemical regulation and
signaling and causal automata models in general.

Canalization of Boolean Automata
A Boolean automaton is a binary variable, x ∈{0, 1}, whose state
is updated in discrete time steps, t , according to a determinis-

tic state-transition function relating the states of k inputs to its
own state at the next time step: x t+1 = f (x t

1 , · · · , x t
k ). This logical

function, f : {0, 1}k→{0, 1}, is defined by a look-up (truth) table
(LUT), F ≡{fα :α= 1, · · · , 2k}, with one entry for each of the
2k combinations of input states and a mapping to the automa-
ton’s next state (transition or output), x t+1. The bias, ρ, of the
automata is the fraction of transitions to state 1 in the output
column of the LUT. An exemplar Boolean automaton with its
LUT is shown in Fig. 1A.

A BN is a graph B≡ (X ,C ), where X is a set of N Boolean
automata nodes xi ∈X , i = 1, · · · ,N and C is a set of directed
edges, cji ∈C : xi , xj ∈X , that represent the interaction network,
denoting that automaton xj is an input to automaton xi , as com-
puted by fi(x1, · · · , xj , · · · , xki ) with LUT Fi : for example, the
interaction graph for the BN model of the floral organ develop-
ment in the A. thaliana plant (28) (see Fig. 4A). The set of inputs
into automaton xi is denoted by Xi = {xj ∈X : cji ∈C}, and its
cardinality, ki = |Xi |, is the in-degree of node xi . At any given
time t , B is in a specific configuration of automata states, xt =
〈x t

1 , x t
2 , . . . , x t

N 〉—we use the terms state for individual automata
(x t

i ) and configuration (xt ) for the collective network state (i.e.,
the vector of states of all automata of the BN at time t). The set
of all possible network configurations is denoted by X ≡{0, 1}N ,
where |X |= 2N . BNs update synchronously (all automata simul-
taneously at time t) or asynchronously (some automata are
selected randomly or via a schedule at time t). However, the
effective graph does not depend on the chosen update policy
since it is constructed from the redundancy parameters of each
automaton considered separately.

The canalization of an automaton reflects the fact that not
all input states are equally important for determining its state

B

A

Fig. 1. Constructing the effective graph. (A, Left) The interaction graph of
automaton x4 (green node), with k = 3 input variables (blue nodes, x1, x2, x3)
and (A, Right) its corresponding Boolean logic given by the LUT, with bias
ρ(x4) = 1/4. (B, Left) The effective graph of automata x4 is built from the
wild card redescription of the LUT (B, Right), F′, which shows that input
x3 is always redundant (only wild cards in its column) and that x4 = x1 ∧
x2. Edge thickness denotes edge effectiveness, eji , with the fully redundant
edge shown in dashed red. The total input redundancy of automaton x4 is
kr (x4) = 1.75, and therefore, its effective connectivity is ke(x4) = 1.25.
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transition (3). We follow Marques-Pita and Rocha (17) by
quantifying canalization through the amount of logical redun-
dancy present in the automata. Specifically, we use the first step
of the Quine–McCluskey Boolean minimization algorithm (29)
to identify inputs of an automaton x , which are redundant given
the state of its other inputs. This procedure compresses an LUT
into the set of all distinct prime implicants of f , represented as
a set of wild card schemata, F ′≡{f ′υ}, in which the wild card or
“don’t care” symbol, #, denotes an input whose state is redun-
dant for determining the automaton transition given the states
of other necessary inputs. For instance, schema f ′1 in the Fig. 1B
example specifies that when input x2 = 0, the states of inputs x1

and x3 are redundant to determine the next state of x4, which
is guaranteed to be 0. In this process, the original LUT F is
redescribed into a complete set of schemata F ′ (Fig. 1).

Every wild card schema f ′υ ∈F ′ redescribes a subset of entries
in the original LUT, denoted by Υυ ≡{fα : fα � f ′υ}⊆F , where
�means “is redescribed by.” For example, schema f ′1 in the Fig. 1
example redescribes the set of LUT entries Υ1≡{f1, f2, f5, f6}⊆
F . The set of (overlapping) schemata F ′ is complete since it con-
tains all unique prime implicants that redescribe all entries of the
original LUT, here described as wild card schemata. In Boolean
minimization, the set of prime implicants can be further reduced
(via the additional steps of the Quine–McCluskey algorithm or
equivalent methods), but because our goal is to tally all possi-
ble minimal transition conditions of an automaton, we preserve
all prime implicants; ref. 17 and SI Appendix have details. Notice
that all measures that ensue are computed from the entire popu-
lation of prime implicants and are thus parameters, not sampled
statistics, of logical functions fi .

The amount of canalization present in the logic of an automa-
ton can be quantified by probabilistic parameters derived from
the schema redescription of its LUT. Input redundancy, kr (x ),
measures the number of inputs that, on average, are not needed
to determine the state of automaton x , assuming that all input
combinations are equally likely. It is quantified by tallying the
mean number of wild card symbols present in schemata set F ′(x )
that redescribes LUT F (x ):

kr (x ) =

∑
fα∈F

avg
υ:fα∈Υυ

(
n#
υ

)
|F | , [1]

where n#
υ is the number of # symbols in schema f ′υ . In computing

kr (x ), we assume that each entry fα of LUT F can be redescribed
with equal likelihood by any of the schemata f ′υ in F ′(x ) that
includes it (fα ∈Υυ). Thus, we use the average operator (avg) in
Eq. 1. This is the same as assuming that any schema (or prime
implicant) is a viable intervention possibility to change the state
of automaton x . Other redundancy aggregations are possible
(17), but averaging over all possible schemata allows the per-
edge separation of redundancy we pursue below (SI Appendix,
section 1 has additional discussion).

A complementary parameter of the redundancy of automaton
x is its effective connectivity:

ke(x ) = k(x )− kr (x ), [2]

which yields the number of inputs that are on average neces-
sary to determine the automaton’s state. Whereas k(x ) is the
number of inputs to automaton x present in the interaction
graph of the BN (in-degree), ke(x ) measures the number of such
inputs that are actually (on average) necessary to determine the
state of x—the effective connectivity of x . In the Fig. 1B exam-
ple, because six entries of LUT F (f1 . . . f6) are redescribed by
schemata with two wild cards (f ′1 , f ′2) and two entries (f7, f8) are

redescribed by schemata with one wild card (f ′3), via Eqs. 1 and
2 we obtain kr (x4) = (6× 2 + 2× 1)/8 = 1.75 and ke(x4) = 3−
1.75 = 1.25. In other words, on average, 1.75 inputs to x4 are
redundant, and thus, its effective connectivity is 1.25—in contrast
to its in-degree of three.

Other automata parameters, distinct from Eqs. 1 and 2, can be
used to measure canalization. For instance, sensitivity (30) also
aims to measure the effective dynamics of a Boolean automa-
ton, but as we discuss below, it does not capture the nonlinear
effects of collective canalization. We can also extract additional
redundancy from the symmetries that exist in the schemata set
F ′, thus providing a further compression of this set (17, 31), but
we do not consider symmetry redundancy in the present analysis.
Additional algorithmic details as well as relationships between
canalization, control, robustness, and modularity of BN models
are presented in refs. 17 and 20 and SI Appendix.

Most automata contain some amount of input redundancy;
only the two parity functions for any k have kr = 0 (e.g., the exclu-
sive OR, XOR function and its negation for k = 2). Therefore,
the original interaction graph of a BN misses the high amount
of redundancy present in most BNs and does not capture how
automata truly influence one another in a network.

The Effective Graph and Redundancy in Models of
Biochemical Regulation and Signaling
The input redundancy and effective connectivity of Eqs. 1 and
2 reveal that, on average, the interaction graph overestimates
the number of inputs needed to determine transitions. How-
ever, these parameters do not specify which of the interactions
are actually more effective and how they combine to form path-
ways that transmit signals through the network. To measure
how input redundancy is distributed over the individual inputs
to an automaton, we introduce the per-input parameters of
redundancy and effectiveness. The latter is then used to com-
pute the edge weights of the effective graph, which provides a
(probabilistic) synthesis of the canalizing dynamics of a BN.

Edge redundancy, rji ∈ [0, 1], tells us, on average, how redun-
dant an incoming edge from automaton xj is in determining the
state of automaton xi . This is computed by counting the average
number of schema in F ′i in which input xj is specified by a wild
card symbol:

rji =

∑
fα∈Fi

avg
υ:fα∈Υi

υ

(j �#)υ

|Fi |
, [3]

where (j �#)υ is a logical condition that assumes the truth
value one if input xj is a wild card in schema f ′υ and zero oth-
erwise; avg is the average operator. Similarly, edge effectiveness,
eji ∈ [0, 1], captures the extent to which an incoming edge from
automaton xj is on average necessary to determine the value of
automaton xi :

eji = 1− rji . [4]

Naturally, kr (xi) =
∑

j rji and ke(xi) =
∑

j eji , meaning that the
canalization of an automaton is additive over its incoming edges.

We can now define the effective graph of a BN to capture
the varying influence of each input edge on the dynamics of
automata nodes. Specifically, E ≡ (X ,E), where X is the set of
automata and E is the set of directed edges, weighted by their
effectiveness eji as defined by Eq. 4. Note that an edge (interac-
tion) can be fully redundant if its effectiveness is null, eji = 0.
This is the case of input x3 in the Fig. 1B example, which is
always redescribed by a wild card in F ′(x4) and thus, e34 = 0. In
practice, fully redundant edges should be completely removed,
but in this article, to catalog their existence, we emphasize them
as red dashed edges (e.g., edge e34 in Fig. 1B).
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One may think that fully redundant edges should not occur in
well-constructed networks; however, they are fairly common in
systems biology models. Indeed, we analyzed 78 Boolean mod-
els stored on the Cell Collective (9) and found that 17 of them
(22%) contained at least one fully redundant edge, with 87 fully
redundant edges in total. The inclusion of fully redundant edges
in these models may result from inference methods based on
information theory that can fail to capture polyadic relationships
(32), but the most likely reason is an incomplete record of exper-
imental observation. Typically, systems biology models integrate
many experimental studies conducted by many different teams in
different scenarios, which are available in interaction databases
and the published literature (33). Modelers who integrate such
scientific evidence have to make decisions about conflicting or
weak evidence (13). For instance, the A. thaliana model stud-
ied below (see Fig. 4) contains three fully redundant edges,
which ultimately result from “subjective decisions given alter-
natives with equivalent results” (27). SI Appendix, section 2.B
has a more detailed discussion of how these issues can lead to
fully redundant edges in systems biology models. Certainly, our
methodology can serve as a logical check on these models to
remove completely redundant interactions.

The effective graph is a probabilistic synthesis of the dynamical
redundancy of a BN model given all its possible initial conditions.
However, in systems biology we often want to study a model
under specific initial conditions: for example, cells in a cancer
state or under the influence of a particular drug, as pursued
below in the analysis of the estrogen receptor positive (ER+)
breast cancer model. Since the set of possible initial conditions
in such cases is reduced, the interaction topology of the effec-
tive graph changes. This is easily captured in our methodology by

A B

C D

Fig. 2. Central tendency, variation, and heterogeneity of edge effective-
ness of Boolean automata in biochemical regulation and random ensembles.
(A) The distributions of edge effectiveness for ensembles of 104 automata
with degree k = 6 at each bias ρ. (B) The distribution of edge effectiveness
of the 630 incoming interactions to 105 automata with degree k = 6 in Cell
Collective models (green) compared with a bias-matched sample of random
Boolean automata (pink). (C) The distributions of edge effectiveness Gini
coefficients for inputs to automata in each of the random ensembles from
A. (D) The distribution of edge effectiveness Gini coefficients for inputs to
the 105 automata with degree k = 6 in the Cell Collective models (green)
compared with the bias-matched ensemble of random Boolean automata
(cyan).

conditioning the effective graph E on a set of variables, K ⊆X ,
that are fixed to specific constant states. The resulting conditional
effective graph, E|K , can have a drastically altered effective
topology, for instance, with many more interactions revealed to
be fully redundant.

The computational complexity of our canalization parameters
and the effective graph scale linearly with the number of nodes
N and can thus be computed for large BNs (17), unlike most
methodologies used to analyze the dynamics of BNs. Instead,
the computational complexity bottleneck to derive the effective
graph is bounded by the Quine–McCluskey algorithm (29) on
the largest degree node in the BN: that is, the automaton with
the largest ki . When this value is very large, one can sample the
prime implicant population, but none of the analysis here pur-
sued required such estimation. We provide a full implementation
of all canalization parameters (Eqs. 1–4) and the effective graph
in the open-source CANA python package (31).

Effectiveness of Biochemical Interactions
Input redundancy (Eq. 1) is prevalent in random Boolean
automata. In BNs, this leads to a lower effective connectivity (Eq.
2) for automata nodes than the interaction graph (in-degree)
specifies, with varying edge effectiveness (Eq. 4) distributed
across inputs. The prevalence and variation of edge redun-
dancy are shown in Fig. 2A for random Boolean automata of
degree k = 6. For all values of bias (ρ), we observe much vari-
ation in edge effectiveness, although its median value goes from
eji ≈ 0.18 at the lowest bias (ρ= 1

64
) to eji ≈ 0.75 at the high-

est bias (ρ= 1
2

). The upward shift of the distribution of edge
effectiveness indicates that inputs tend to become more impor-
tant for determining the state transition of the automata as bias
increases. The behavior for automata with other k is similar (SI
Appendix, Fig. S3).

The observed distribution of edge effectiveness for random
Boolean automata provides context for next question: how much
redundancy is present in experimentally validated biochemical
interactions? To answer this question, we calculated the edge
effectiveness of all 8,220 interaction edges from the 78 BN mod-
els in the Cell Collective (SI Appendix, section 2). We compare
this distribution with an ensemble of random automata match-
ing the degree (k) and bias (ρ) of the Cell Collective automata.
Specifically, for each automaton from the systems biology mod-
els, we sample 103 random automata with exactly the same
degree and bias. We observe that the mean edge effectiveness
of interactions in the biochemical networks is much smaller
than that of interactions in the random ensemble (Fig. 2B). For
simplicity but without loss of generality, Fig. 2B depicts the distri-
bution of effectiveness for 630 incoming edges to 105 automata
of degree k = 6 in the systems biology models, as compared with
that of the bias-matched random ensemble of same k ; distribu-
tion comparisons for other values of k are shown in SI Appendix,
Fig. S3. A two-sample independent t test for the difference in the
means between the experimentally validated biochemical (0.27)
and the random interactions (0.51) confirms the statistical differ-
ences between these distributions for k = 6 automata, with a P
value < 10−100.

Edge effectiveness allows us to differentiate network inter-
actions based on how much they contribute to determining
automata transitions and to identify the inputs that most control
a given automaton. In contrast, the original interaction graph of
a BN does not differentiate the inputs to an automaton. Let us
look at how edge effectiveness differentiates input importance
with an example. Consider two automata, b (balanced) and u
(unbalanced), each with k = 4 inputs: x1, x2, x3, x4. In the first
case, the transition function is specified by fb = x1 ∧ x2 ∧ x3 ∧ x4,
a symmetric logic since all inputs are interchangeable. In this bal-
anced case, the edge effectiveness is the same for all incoming
edges ej ,b ≈ 0.3. In the second case, the transition function is
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specified by fu = x1 ∨ (x2 ∧ x3 ∧ x4), a logic where input x1 pri-
marily determines the transition. Accordingly, in this unbalanced
case the edge effectiveness varies by incoming edge: e1,u ≈ 0.91
and e2,b = e3,b = e4,b ≈ 0.24, which reflect the importance of
input x1 in determining the state of the automaton.

To ascertain the heterogeneity of effectiveness in biochemi-
cal interactions, we again compare the systems biology models
in the Cell Collective with similar random ensembles. For each
automaton, we compute the Gini inequality coefficient to obtain
a real number between zero and one, where zero denotes that
all inputs have exactly the same effectiveness and one denotes
maximum inequality among the inputs (i.e., one input completely
dominates over the others) (SI Appendix, section 3). When
applied to the balanced b and unbalanced u example automata,
we obtain Gini coefficients of 0 and 0.31, respectively. This accu-
rately reflects the effectiveness equality of the inputs to b and the
effectiveness inequality of the inputs to u .

The Gini coefficient calculated for the automata in the Cell
Collective database reveals greater effectiveness inequality in
their interaction than in comparable random automata. In other
words, a smaller subset of inputs plays a more important role
in controlling the biochemical variables in these models than is
expected by chance. Consider first Fig. 2C, where edge effec-
tiveness in random automata with degree k = 6 is characterized
by a relatively small Gini coefficient for all biases. This indi-
cates that in random automata, while redundancy is pervasive
(Fig. 2A), it is distributed similarly over the inputs—incoming
edges are roughly equally effective in determining the state of
the random automata. In contrast, as shown in Fig. 2D, the Gini
coefficient of the edge effectiveness of automata with k = 6 in
the 78 biological models varies much more but is consistently
higher than the bias-matched random automata. This is further
supported by a two-sample independent t test for the differ-
ence in the means of the automata distributions in biochemical
models (0.22) and in the random ensemble (0.05), which con-
firms the statistical differences between these distributions with
a P value < 10−100.

In summary, our analysis of edge effectiveness demonstrates
not only that automata used to model biochemical regulation
in the Cell Collective contain more redundancy than expected
in random automata but also, that this redundancy is unevenly
distributed over their inputs. In other words, in the models
of biochemical regulation, only a few interactions are effective
in controlling variable transitions, while most interactions are
redundant and not very dynamically effective.

Collective Canalization in Dynamical Regulation
A crucial feature of Boolean automata is the potential for highly
nonlinear integration over their inputs (14, 15). Canalization
is one such nonlinear phenomenon whereby a subset of inputs
jointly determines the state of an automaton while rendering
redundant the complement subset of inputs (3, 17). However,
existing measures of canalization do not consider the full range
of nonlinear joint interaction.

We can measure the extent to which nonlinear collective
canalization is present in an automaton by comparing our per-
input canalization and redundancy parameters—that capture
joint dependencies—with parameters that consider each input
independently. One such measure assuming independence is the
activity of an input xj to a Boolean automaton xi : aj (xi). It is
the probability, P(¬x t+1

i |¬x t
j ), that automaton xi flips its state at

t + 1 when its input xj flips its state at t , given a uniform distribu-
tion of input states at t (30). In turn, the sensitivity of automaton
xi is the sum of all its input activities s(xi) =

∑
j aj (xi).

Interestingly, our formulation of canalization via schema
redescription also yields the activity of an input with a sim-
ple modification to formula (Eqs. 3 and 4), by substituting the
maximum operator (max) for the average operator (avg):

aj (xi) = 1−

∑
fα∈Fi

max
υ:fα∈Υi

υ

(j �#)υ

|Fi |
. [5]

SI Appendix, section 1.C has a proof of this formulation of activ-
ity. From here, it follows that eji ≥ aj (xi) and ke(xi)≥ s(xi). This
fact allows us to measure how much of the effective connectivity
of an automaton xi and the effectiveness of its inputs xj derives
from joint interactions among the inputs:

kc(xi) = ke(xi)− s(xi), cji = eji − aj (xi). [6]

In other words, kc(xi) and cji measure the portion of canalization
that derives from collective canalization at the node and input
levels of a BN—in excess of sensitivity and activity, respectively.

Because collective canalization is very common, especially as
the number of inputs (k) increases (3), the distinction between
effective connectivity and sensitivity is quite relevant for under-
standing the true regulatory dynamics in BNs, especially in
systems biology models. Indeed, even for Boolean automata of
k = 2, the sensitivity parameter does not discriminate between
such common Boolean functions as conjunction/disjunction and
proposition/negation: s(x1 ∧ x2) = s(x1 ∨ x2) = s(x1) = s(¬x1) =
1. In contrast, effective connectivity correctly accounts for the
additional collective canalization that is present in the con-
junction/disjunction (and other) functions: ke(x1 ∧ x2) = ke(x1 ∨
x2) = 5/4 = 1.25, while ke(x1) = ke(¬x1) = 1.

Collective canalization is at play even in the small BN shown
in Fig. 1. The edges of its effective graph are e14 = e24 = 0.625,
e34 = 0, whereas the activity measured for the same interac-
tions is a1(x4) = a2(x4) = 0.5, a3(x2) = 0. The discrepancy occurs
because x1 and x2 jointly determine x4 with a collective canal-
ization of c14 = c24 = 0.125. Indeed, on average one input is not
sufficient to determine the state of x4, as sensitivity s(x4) = 1
implies. For one-quarter of the input configurations (two of eight
entries in the LUT redescribed by schema f ′3), both inputs x1 and
x2 are needed to jointly determine the state of x4, and thus, its
collective canalization is kc(x4) = 0.25. Clearly, the effective con-
nectivity value of ke(x4) = 1.25 is a more accurate characteristic
of how inputs jointly determine the state of x4, by aggregating
both their individual and collective contributions. On average,
1.25 inputs are needed to specify the transition of x4 (conversely,
kr (x4) = 1.75 inputs are on average redundant); SI Appendix,
section 1 has an additional example. While the concept of “c sen-
sitivity” (34) extends sensitivity to subsets of c inputs, it results in
a vector of values, which is less intuitive in a network context than
the scalar parameter ke .

Collective canalization is measured at node and edge lev-
els unequivocally via Eq. 6 and characterizes differences in the
canalization of Boolean functions that sensitivity and activity do
not measure. The question of how much the collective canaliza-
tion captured by our parameters affects the dynamics of BNs is
beyond the scope of this paper. However, collective canalization
has already been shown to lead to more accurate predictions
of critical behavior across a wide range of BN connectivity and
dynamical behavior (19).

Together, our results show that our canalization parameters
(Eqs. 1–4) capture redundancy and dynamical effectiveness in
BNs at the automaton node and edge levels. They encompass
parameters such as sensitivity and activity and importantly, also
account for the nonlinear effects of collective canalization. One
goal of the effective graph is to precisely quantify the true impact
of interactions in spreading perturbations and control signals in
BN models of biochemical regulation. The edges, therefore, are
weighted according to their dynamical effectiveness (Eq. 4) to
capture both their activity and (nonlinear) collective canalization
contributions (Eq. 6). Next, we study the utility of the effective
graph in predicting the spread of dynamical perturbations and
identifying control pathways.
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Effective Graph Predicts the Spread of Perturbations
An important goal of systems biology is to quantify and predict
the spread of perturbations and control signals across networked
regulatory pathways (35, 36). While the interaction graph of a BN
is useful for a theory of perturbations because it specifies which
automata are topologically reachable in a given number of time
steps, it fails to capture the varying effectiveness of each inter-
action in propagating signals through network pathways. The
effective graph, on the other hand, provides enriched informa-
tion about dynamical redundancy and canalization from each
constituent automaton. In this section, we demonstrate that the
effective graph’s enriched portrait better captures the spread of
perturbations in both random BNs and experimentally validated
systems biology models.

Many types of perturbations can be considered, including
those that change the structure or logic of the original model
such as edge shuffling or deletion (22). Here, we focus on
how specific, fixed models of biochemical regulation respond
to different dynamical conditions—such as cellular response
to drug regimens in ER+ breast cancer. Thus, unless other-
wise noted, by perturbation we mean negating the logical state
of an automaton at time t (also known as bit-flip perturba-
tion). The impact of such a perturbation to an automaton in
a BN is quantified by the Boolean analogue of the partial
derivative (37):

∂
(i)
t xj (xα) = |x t

j (xα)− x t
j (x¬iα )|, [7]

where x t
j (xα) denotes the state (truth value) of automaton node

xj at time t when the BN is initiated with configuration x0 = xα
at time t = 0 and x¬iα denotes configuration xα with the state
of automaton xi negated. The partial derivative yields one if
flipping the state of xi in initial configuration x0 leads to xj flip-
ping its state at time t and zero otherwise. The total impact on
automaton xj of perturbations to automaton xi after t steps is
the average over all initial configurations:

ιij (t) = 2−N
2N∑
α=1

∂
(i)
t xj (xα). [8]

For large BNs, ιij (t) must be estimated by averaging over a
random sample of initial network configurations.

We now study how well the interaction and effective graphs
predict the total impact of perturbations, using a different
spreading model for each: MIG and MEG, respectively. To set
up MIG, we consider that all nodes xj connected via a path of
at most t edges starting from node xi are equally impacted by
a perturbation to node xi , where t is the number of time steps
since the perturbation—the “light cone” of xi as signals to any
xj cannot travel faster than the minimum number of edges (SI
Appendix, Fig. S1). The second model MEG is similar except
that the (weighted) effectiveness edges in the effective graph are
assumed to proportionally constrain the spread of a perturbation
(SI Appendix, section 4). This constraint is given by the prod-
uct of edge weights in the strongest path between xi and xj (SI
Appendix, Fig. S1), limited by the light cone such that the num-
ber of edges in the path is smaller than the number of elapsed
time steps. By choosing the path with maximum product of edge
weights as a surrogate measure for the total impact of pertur-
bations, we assume [as in linear control (38)] that a signal can
propagate without restriction via a connected path in the inter-
action graph model (MIG), but edge effectiveness deferentially
restricts propagation in the effective graph model (MEG). To
measure how well each model predicts which nodes xj are most
affected by perturbations to node xi , we compute the average
Spearman’s rank correlation between each model and the true
ιij (t) at each time step.

We illustrate the superior predictive power ofMEG first with
an experiment using random BNs of N = 100 nodes, fixed degree
k = 3, and average bias ρ̄= 0.4 (SI Appendix, section 4). For each
BN, we select 10 nodes xi at random to perturb, approximating
the total impact ιij (t) on the other nodes xj with a sample of 104

random initial configurations. As shown in Fig. 3, the rank cor-
relation of ιij (t) with the effective graph model, MEG (red), is
consistently better than with the interaction graph model, MIG
(blue). Indeed, after the full network is encompassed in the light
cone, MIG is unable to differentiate which nodes might have
been impacted by the perturbation, and Spearman’s correlation
is zero. In contrast, the effective graph retains predictive infor-
mation about which variables are impacted by perturbations as
measured by a significant positive Spearman correlation with
the true dynamical impact. As shown below, the ability of the
effective graph to predict perturbation spread in experimentally
validated models of biochemical regulation is even more striking.

Effective Graph Reveals How Control Pathways Function in
Models of Biochemical Regulation
The characterization of control strategies in biomedicine can
help focus experiments, aid the design of advanced disease ther-
apeutics (1, 39), and even suggest intervention strategies to
reprogram cells (40) (e.g., to revert a mutant cell to a wild-type
state). It is well known that when the set of automata nodes X of
a BN is large, enumeration of all configurations x∈X of its state-
transition graph (STG) becomes difficult, making the controlla-
bility of BNs a nondeterministic-polynomial-time hard problem
(41). Therefore, control methodologies that leverage the inter-
action graph or otherwise approximate the dynamics are highly
desirable since they can greatly simplify the complexity of BN
control (1, 17).

Effective Graph Enhances Structure-Only Control Inference. Several
recent methodologies aim to determine the controllability of
complex dynamical systems based solely on the graph of inter-
actions between variables: structural controllability (SC) (38),
minimum dominating set (MDS) (42), and feedback-vertex set
control (FVC) (1, 43). By using only the interaction graph to pre-
dict minimum sets of variables (driver nodes) that are needed
to control a network, these methods make predictions about

Fig. 3. The effective graph captures the spread of perturbations. The pre-
dictive power of the edge-product approximation using the two models,
MIG (blue) and MEG (red), measured by the Spearman rank correla-
tion (vertical axis) with the total impact, ιij(t), sampled from 104 tra-
jectories, after t steps (horizontal axis). The shaded region denotes one
SD for a sample of 100 random networks and 10 perturbed nodes per
network.
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the entire ensemble of dynamical systems that fit the same
interaction graph (20). In contrast, since the effective graph is
obtained by removing dynamical redundancy in a specific BN,
the ensemble of possible dynamical systems that can fit is much
smaller. Therefore, the effective graph is likely to lead to more
precise inferences of control pathways in specific systems biology
(BN) models than those derived from structure-only methods,
such as SC, MDS, and FVC.

The removal of fully redundant edges from the interaction
graph can reduce the number of feedback loops, revealing a
smaller or distinct set of driver nodes than those predicted by
FVC (SI Appendix, section 5). Consider the interaction and effec-
tive graphs of the A. thaliana flower development BN (27, 28)
(TBN) in Fig. 4 A and B. This gene regulatory model integrates
experimental evidence of causal relationships among 15 genes
(and the proteins they encode) that regulate cell-fate determi-
nation during floral organ specification in this plant. The loop
between Terminal Flower 1 (TFL1) and Floral homeotic Apetala
2 proteins disappears because the edge from the latter to the
former is completely redundant. While FVC predicts that TFL1
is required to control the network (to control this nonexistent
loop), analysis of its STG (SI Appendix, section 6) reveals that
TFL1 can be replaced by the AP1 (Floral homeotic Apetala
1) protein, which is not in this loop, to control the network.
Interestingly, AP1 is not in the set of driver nodes FVC pre-
dicts are needed for control. Similarly, the completely redundant
interaction between AP1 and LFY (Leafy) removes the loop
between these two proteins, allowing LFY to be replaced by the
EMF1 (Embryonic flower 1) protein to control the network under

the (pinning) control conditions assumed by FVC (SI Appendix,
section 6).

Importantly, edges do not need to be fully redundant to
make interaction loops dynamically irrelevant. The drastic reduc-
tion in effective connectivity observed by comparing the TBN
interaction and effective graphs is summarized in Table 1. It
underscores how canalized the dynamics of the TBN model is
and how such canalization alters the effective or true interac-
tion structure. Consider the case of the Floral homeotic Pistillata
(PI) protein, a transcription factor in the Thaliana flower devel-
opment model in Fig. 4. FVC predicts that PI is required for
dynamical control of this BN. However, the PI self-regulation
loop has very low effectiveness (≈ 0.19). Analysis of this model’s
STG (SI Appendix, section 6) reveals that PI is not in fact needed
to control this network; indeed, PI has a very low effective out-
degree (k out

e = 0.47) and thus, very little influence on dynamics
(Table 1).

Other features of a very canalized dynamics are also strik-
ing. While transcription factors Agamous (AG), Floral homeotic
Apetala 3 (AP3), and PI are seemingly regulated by many other
proteins (in-degrees of nine, seven, and six, respectively), their
effective connectivity is considerably smaller (2.1, 2.3, and 2.2,
respectively). In other words, unlike what is assumed in the inter-
action graph, these transcription factors are on average regulated
by little more than two other proteins at any given time. In
general, all variables with k > 1 have much input redundancy
(variables with a single input, by definition, cannot have redun-
dancy). Indeed, except for the Fruitful (FUL) DNA-binding
protein, all have more than 50% input redundancy and less than

A B C

D

Fig. 4. Study of the A. thaliana BN model. (A) The interaction graph for the A. thaliana BN. (B) The effective graph. Edge thickness denotes effectiveness,
eji ; dashed red indicates fully redundant edges (Table 1 shows parameter values); node color intensity denotes effective out-degree; and green nodes denote
cases of null effective out-degree (kout

e = 0). (C) A threshold effective graph showing only edges with eji ≥ 0.4 to enhance visibility of the largest connected
component that allows LFY to function as a master regulator and reveals that WUS functions simply as an autoregulator; green nodes denote cases of
null effective out-degree at this threshold level. (D) Spearman’s rank correlation (vertical axis) between the true impact of perturbing each node [ιij(t)]
and respective path-length approximation predictions using the interaction (blue) and effective (red) graphs after t steps (horizontal axis); FUL cannot be
computed (N/A, not available) because it has null impact on other variables (validating our observation of a fully redundant output).
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50% effective connectivity, as seen in columns k∗r and k∗e in
Table 1.

Effective Graph Aids Explanation of Biological Mechanism.
Structure-only control theories yield a set of driver nodes that
are needed for control, but they do not provide a mechanistic
explanation of how those nodes control the network or which
nodes are more effective at control and signal propagation. The
examples above demonstrate that the effective graph includes
important dynamical redundancy information pertaining to the
specific BN being analyzed. It reveals a more accurate portrait
of how control operates, including alternative, actionable
intervention strategies—such as the possibility of using AP1
or EMF1 instead of TFL1 or LFY , respectively, in the set of
driver nodes that control the TBN (by pinning).

Beyond identification of accurate driver variables, an analy-
sis of the strongest paths of the effective graph reveals a more
precise mechanistic understanding of how control propagates in
biochemical regulation models. Consider the control roles of the
LFY and WUS (Wuschel) transcription factor proteins in the
Thaliana model. The most general form of BN control allows
perturbations at any stage of the dynamics (to any configuration
of the STG)—a more general form of control than the FVC pin-
ning control assumptions (SI Appendix, section 5). In this case,
via an STG enumeration method (20), we observe that the TBN
is fully controllable by interventions to the trivial inputs {UFO,
LUG, CLF} and additional driver set {LFY ,WUS} alone. This
makes sense because in the interaction graph in Fig. 4A, there
is a path from WUS or LFY to any other node (except the
three input nodes); so, in principle, signals from these nodes
could reach any other node. However, in the effective graph in
Fig. 4B, WUS is connected to the remainder of the network
via a single very low-effectiveness edge with AG (AG tran-
scription factor): eWUS,AG = 0.1. Therefore, WUS is, in effect,
dynamically decoupled from the remainder of the network. In
contrast, LFY preserves paths with high edge effectiveness to
all other nodes in the effective graph. The threshold effective
graphs in Fig. 4C and SI Appendix, Fig. S4 clarify the very dis-
tinct functional roles of these two proteins in the dynamics of this
development model.

We validate these inferences with the analysis of perturbation
spread on the TBN effective graph, as shown in Fig. 4D. The
predictive power of the path-length approximation is very sim-
ilar for both the interaction and effective graphs in the case of
LFY , but it is completely different for WUS where the effective
graph leads to a much higher correlation with the true impact
of perturbing the latter variable. In other words, WUS does not
behave at all like the original interaction graph would suggest.
The effective graph reveals that these two transcription factors
function very differently in how they control the TBN dynamics

Table 1. Canalization parameters for variables with k ≥ 2 in the
A. thaliana model (SI Appendix, Table S4)

xi k kr ke k∗r k∗e kout kout
e kout

e /kout

AG 9 6.9 2.1 0.77 0.23 5 1.9 0.38
AP3 7 4.7 2.3 0.68 0.32 2 0.8 0.4
PI 6 3.8 2.2 0.64 0.36 2 0.47 0.24
AP1 4 2.4 1.6 0.59 0.41 6 1.4 0.23
LFY 4 2.8 1.2 0.69 0.31 7 4.8 0.69
TFL1 4 2.8 1.2 0.69 0.31 5 2.8 0.57
WUS 3 1.4 1.6 0.48 0.52 2 0.91 0.46
FUL 2 0.75 1.2 0.38 0.62 1 0 0

k, kr , and ke denote in-degree, input redundancy, and effective con-
nectivity, respectively; k∗r and k∗e denote versions of kr and ke normalized
by k; and kout and kout

e denote out-degree and effective out-degree,
respectively.

of this model. While WUS is only an autoregulator, LFY is a
master regulator mechanism (44). Thus, even though the driver
set for this network is {LFY ,WUS}, except to control WUS
itself, LFY is sufficient and a much more effective candidate for
experimental intervention.

Also striking in the TBN effective graph is the case of the
DNA-binding FUL protein. The interaction graph, built from
published pairwise experiments, depicts that it causally affects
LFY . However, this interaction is completely redundant in the
model’s logic for LFY . The FUL protein, therefore, has no
impact in this model, as shown in the effective graph in Fig. 4B
and confirmed by our perturbation analysis. Notice that because
perturbations to FUL lead to null impact on other variables, we
cannot compute Spearman’s correlation to its predictive power
for the interaction and effective graphs (hence, the N/A in Fig.
4D). Although the interaction graph implies that signals from
FUL can reach almost all other variables in the model, the
effective graph clearly reveals it reaches none.

We note that the effective graph is a probabilistic represen-
tation of the underlying dynamics, so even an edge with very
low effectiveness may on rare occasions play a key role in deter-
mining dynamics. Still, statistically, edges with very low effec-
tiveness are likely to play a reduced role in propagating control
signals. This is demonstrated by the fact that the effectiveness-
weighted paths of the effective graph are much more predictive
of (correlated with) spreading dynamics after variable pertur-
bation than paths of the original interaction graph, for both
random graphs in Fig. 3 and the Thaliana network in Fig. 4D.
Thus, strong paths in the effective graph are likely good control
channels in systems biology models because they are better at
propagating signals than other paths in the original interaction
graph.

Effective Graph Enhances Understanding of Signaling in Large Net-
work Cancer Models. The effective graph reveals multivariate
canalizing dynamics by removing redundancy from automata
networks and allows for a more precise characterization of
perturbation and control signals. Since the effective graph is
computed from the scalable schema redescription methodology,
we can apply it to large networks for which full enumeration of
the configuration space, and thus, computation of true control
behavior or identification of all attractors, is not possible (17,
31). To demonstrate how it allows us to understand canalizing
dynamics and identify effective control pathways, we study two
large signal transduction networks involved in leukemia (45) and
ER+ breast cancer (26), whose interaction and effective graphs
are shown in Fig. 5 and SI Appendix, Figs. S7–S13.

The ER+ breast cancer network is a multistate automata
network that has been converted to a fully equivalent, 80-
variable BN (26). The goal of this model, built from exper-
imental evidence, is to study resistance mechanisms to PI3K
(phosphatidylinositol 3-kinase) inhibitors in ER+, HER2+, and
PIK3CA-mutant breast cancer cells. Seven drugs that inhibit
specific targets of interest are included in the model. For
instance, alpelisib is a PI3K inhibitor (a drug that inhibits
phosphoinositide 3-kinase enzymes involved in cell growth
signaling pathways). The model is used to study known
and novel combinatorial interventions that combine PI3K
inhibition with other strategies (26). The objective is not so much
to find the attractors of the entire multivariate dynamical sys-
tem but simply to identify the final state of specific outcome
nodes that model cancer cell death (apoptosis) or proliferation.
In other words, the model is constructed to study which dynami-
cal interventions control cancer cells to their programmed death
or at least inhibit their proliferation.

The effective graph of this model (SI Appendix, Fig. S11)
reveals that much redundancy is present in its dynamics, and
edge effectiveness is highly variable. Some interactions are
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almost completely redundant with effectiveness as small as 0.065.
The maximum edge effectiveness, 1.0, is only observed for
automata with a single input, where redundancy cannot exist
by definition. SI Appendix, Table S7 shows canalization param-
eters for all of the variables in this model; Fig. 5D shows key
parameters for the seven drugs included in this model.

The interaction graph (80 nodes) has 23 (29%) autoregula-
tor (self-loop) nodes, of which 18 (23%) are input nodes (SI
Appendix, Fig. S10). This means that a large proportion of nodes
cannot be controlled via other nodes. Still, reachability is ulti-
mately formed by a single weakly connected component and
45 strongly connected components, the largest of which has 24

nodes (SI Appendix, Tables S2 and S3). This implies that signals
from input nodes could in principle reach the entire network
via the weakly connected component and 30% of the nodes
could regulate each other via the largest strongly connected
component.

The effective graph, however, reveals a different, clearer
understanding. The network dynamics is effectively separated
into various modules, perhaps because the model is a synthe-
sis of six pathways implementing distinct resistance mechanisms
to PI3K inhibition that affect the apoptosis and proliferation
pathways (26). Indeed, the most effective edges form very few
connections among subsystems that can effectively propagate

B

A

C D

Fig. 5. Study of the ER+ breast cancer BN model. (A) Hierarchical rendering of the effective graph for the BN model of ER+ breast cancer. Edge thickness
denotes its effectiveness, thresholded to eji > 0.2; node color denotes constituent pathways (legend is in the top right corner). (B) Conditional effective
graph with Alpelisib= ON (pinned state denoted with bold text and blue border), revealing how it renders much of the influence from RTK (receptor
tyrosine kinases) pathway redundant (red dashed edges) while fixing the state of several variables in the PI3K pathway, such as the phospholipid PIP3
(phospholipid); variables whose state becomes fixed (constants) are denoted by a blue border, and edges that transmit a constant input state are denoted
by a dashed blue color. (C) Spreading dynamics of perturbations to each of the seven drugs in the model and the proportion of network effectively reachable.
(D) Effectiveness of outgoing edges of drug variables; kout and kout

e denote out-degree and effective out-degree, respectively.
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signals. This is shown by the existence of many strongly con-
nected components (and input nodes) when only the reasonably
effective edges are considered—especially in comparison with
other models studied (SI Appendix, Tables S2 and S3). Consider
the threshold effective graph with edge effectiveness greater than
or equal to 0.2 shown in Fig. 5A. The largest strongly connected
component is composed of only 17 (21%) nodes, and 45 (56%)
nodes form strongly connected components of a single node.
This means that there is little effective cross-regulation dynam-
ics or long-range signaling in the model. Most of the effective
dynamics can only be driven by direct intervention to many indi-
vidual nodes or short pathways involving few nodes. The network
becomes even more splintered at a threshold of 0.4 (SI Appendix,
Figs. S12 and S13), resulting in the largest strongly connected
component of only 3 (4%) nodes, with 61 (76%) nodes forming
strongly connected components of a single node. Reachability is
also quite diminished; for an edge effectiveness threshold of 0.4,
there are 12 weakly connected components, the largest of which
is composed of only 52 nodes (65% of the network). Indeed,
two of the apoptosis nodes and one of the proliferation nodes,
all key targets of the model, become isolated at effectiveness
threshold 0.4, and one of the apoptosis nodes becomes isolated
at effectiveness threshold 0.2.

These results are consistent with the known behavior of the
model, whereby control of cancer apoptosis or inhibition of pro-
liferation requires interventions to many nodes, including the
PI3K inhibitor, other drugs, and every input node (26). The effec-
tive graph, however, reveals that the dynamics of this network is
very robust to perturbation and hard to control because its sub-
systems are effectively decoupled. That is, canalization works by
preventing propagation of signals and cross-regulation. Indeed,
most of the (nondrug) variables that have an impact on can-
cer apoptosis or proliferation, when working in tandem with the
PI3K inhibitor and baseline (table 3 in ref. 26), have short paths
to those target variables (at most three edges) in the effective
graph.

The connectivity of the effective graph thus reveals that the
overall dynamics of the ER+ breast cancer network is very mod-
ular with many effectively decoupled subsystems—substantially
more than the other experimentally validated biochemical mod-
els considered, as seen in SI Appendix, Tables S2 and S3. In
contrast, in the TBN discussed above, canalization enables LFY
to function as a single master regulator gene that can effectively
propagate signals (effectiveness at or above 0.4). It reaches all
other nodes in a large, weakly connected component of 12 nodes
(80% of network), except for WUS (which remains in a decou-
pled component) and the input nodes. Similarly, in the case of
the T cell survival in leukemia network (45), the effective graph
maintains a single weakly connected component of 58 nodes
(97% of the network), even for a high 0.4 effectiveness, which
reveals a greater ability to propagate effective control signals
through this network.

Let us now use the effective graph to study how differently
the seven drugs are capable of controlling cancer cells to apopto-
sis or proliferation in this model. The goal of the original model
is to find interventions—especially single-node interventions—
that synergize with the PI3K inhibitor Alpelisib (26). Focusing on
the remaining six drugs, the model reveals that Fulvestrant and
Palbociclib best synergize with Alpelisib to increase apoptosis or
decrease proliferation of cancer cells. Everolimus also modestly
increases apoptosis, although not as much as the other two drugs.
In contrast, Neratinib, Trametinib, and Ipatersertib were shown
to not synergize with Alpelisib (table 3 in ref. 26).

An initial observation of the effective graph, summarized in
Fig. 5D, is consistent with those results: Alpelisib and the three
drugs that best synergize with it are the top four with the largest
effective out-degrees (k out

e ). Thus, the most outwardly effective
drugs are also those previously shown to lead to greatest control

of cancer apoptosis or proliferation. More importantly, the effec-
tive graph reveals why the seven drugs affect the cancer dynamics
the way they do. The hierarchical rendering of the (0.2) threshold
effective graph shown in Fig. 5A clearly reveals why Fulves-
trant and Palbociclib synergize so well with the PI 3K inhibitor
Alpelisib: they act on the estrogen (ER) signaling and cell prolif-
eration pathways that Alpelisib cannot effectively reach [except
by indirectly reaching the terminal proliferation nodes via the
mTORC1 (mechanistic target of rapamycin complex 1) path-
way]. This is demonstrated by comparing the conditional effec-
tive graph for Alpelisib= ON with those for a combined inter-
vention Alpelisib=Fulvestrant= ON or Alpelisib=Palbociclib=
ON (SI Appendix, Figs. S16, S18, and S21): only the combina-
tion interventions are capable of fully resolving the state of the
proliferation variables. This explains why these drugs in com-
bination with Alpelisib can drive cancer proliferation to zero
in this model, while Alpelisib on its own cannot (table 3 in
ref. 26). Moreover, Fulvestrant can also effectively reach some
of the apoptosis pathway, which explains why, in combination
with Alpelisib, it can increase apoptosis of cancer cells in this
model but Palbociclib does not—the latter is only effective on
the proliferation pathway and is not effective on apoptosis. These
observations are also corroborated by the study of spreading
perturbations. In Fig. 5C, we can see that Fulvestrant and Palbo-
ciclib reach a distinct, smaller part of the network, with Fulves-
trant reaching more of the network (ER signaling, proliferation,
and apoptosis pathways) than palbociclib (only the proliferation
pathway).

The drugs that were shown not to synergize with Alpelisib
(Ipasertib, Neratinib, and Trametinib) not only have the low-
est values of k out

e in Fig. 5D but are also shown in Fig. 5A and
the respective conditional effective graphs (SI Appendix, Figs.
S19, S20, and S22) to only contribute to the same pathways that
Alpelisib already acts on. Fig. 5C also shows perturbing these
three drugs ultimately spreads only to the same subgraph of the
network that Alpelisib already acts upon. Indeed, the conditional
effective graph for an intervention to Alpelisib alone (plus the
baseline cancer-state input variables) shown in SI Appendix, Fig.
S16 reveals that the drugs Ipasertib, Neratinib, and Trametinib
are rendered completely redundant—interestingly, Neratinib is
actually redundant even without Alpelisib but just with the ER +
/Her2− cancer cell-state baseline (SI Appendix, Fig. S15). This
highlights how the effective graph methodology provides an ana-
lytical explanation of the causal relationships in the model; one
does not need to run ensemble Monte Carlo simulations of the
BN model to know that Ipasertib, Neratinib, and Trametinib
have no effect on apoptosis and proliferation of ER+ cancer
cells in this model when Alpelisib is present.

Finally, the case of Everolimus is also well explained by the
effective graph. While it is very outwardly effective (largest
k out
e in Fig. 5D), it also acts mostly on pathways already under

downstream control by Alpelisib, as can be seen in Fig. 5A
and in comparisons between the respective conditional effec-
tive graphs in SI Appendix, Figs. S16 and S17. Thus, while the
simulations in ref. 26 report a very modest effect on apop-
tosis in synergy with Alpelisib (≈ 4% increase), our results
predict that, in this model, the effect on apoptosis of a com-
bined Alpelisib +Everolimus intervention (Alpelisib alone) is
causally negligible. It is noteworthy that Everolimus retains an
effective edge to the AKT (protein kinase B) pathway (via
mTORC2), providing some control of a subset of this path-
way not under Alpelisib control (the top left in Fig. 5A and SI
Appendix, Fig. 19). Indeed, the spreading dynamics experiments
summarized in Fig. 5C show that perturbations to Everolimus
spread just a little farther than perturbations to Alpelisib.
Everolimus is therefore not as redundant to the overall dynamics
as are Ipasertib, Neratinib, and Trametinib. Moreover, it pre-
serves very effective pathways to both the AKT and mTORC1
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pathways even at a high effectiveness threshold of 0.4 (SI
Appendix, Fig. S13), which can play a part if Alpelisib becomes
inactive.

It should be noted, similarly to the TBN model (Fig. 4D),
that perturbation analysis of the ER+ breast cancer network for
the seven drugs studied shows that the effective graph is always
more correlated with impact on dynamics than is the interaction
graph (SI Appendix, Fig. S14). Therefore, the inferences derived
above from the effective graph are grounded on a more realistic
description of the model’s true dynamics than inferences made
directly from the interaction graph.

In summary, analysis of the effective graph and its dynam-
ics provides a more complete understanding of why the seven
drugs behave as reported in previous experiments with this
model (26)—including why some are redundant. Removal of
redundancy, furthermore, reveals analytically how canalization
affects the mechanisms of apoptosis and proliferation of ER+
cancer cells in this model. In particular, some drugs are more
effective than others due to how decoupled from overall dynam-
ics their pathways become. Indeed, the ER+ breast cancer
network is one of the most “fractured” of all of the exper-
imentally validated biochemical models we studied—an issue
we discuss in detail in SI Appendix, section 7 by studying
their dynamical modularity via the analysis of strongly and
weakly connected network components for all effectiveness
threshold levels.

Discussion and Conclusion
The effective graph we introduce synthesizes both the causal
interaction structure and the nonlinear dynamics of BNs into a
single scalable graph formalism. We use 78 experimentally val-
idated BN models from systems biology to demonstrate that
biochemical interactions contain significantly more redundancy
than expected by chance, and this leads to very canalized nonlin-
ear dynamics. This observation is consistent with Waddington’s
idea that canalization is pervasive in biological systems (25),
whereby most random dynamical perturbations are not effec-
tive and only a few interactions control changes in network
dynamics. This suggests that evolution in biological regulation
has selected for redundancy, which has long been hypothesized
as a requirement for the robustness to random perturbations that
is necessary for evolvability (46, 47).

In addition to systems biology models, we use artificial models
to show that effective graphs provide a more precise character-
ization of the (nonlinear) causal interaction logic of automata
networks than do interaction graphs. These examples demon-
strate that the effective graph is a better predictor of how
perturbation signals propagate than is the original interaction
graph, and thus, it is a useful construct to predict how control
signals propagate. The effective graph can greatly aid the con-
struction, refinement, and analysis of systems biology models
by revealing how evidence from pairwise biochemical regula-
tion experiments is integrated. Indeed, 22% of the biological
models from the Cell Collective contain at least one fully
redundant edge, and all contain much redundancy (19). Thus,
the effective graph can aid in the simplification of biochem-
ical network models to reveal their most essential regulatory
pathways.

In comparison with the original automata networks, edge
effectiveness reflects a loss of causal detail about which specific
input combinations result in downstream variable-state changes.
However, the effective graph is not proposed as a substitute
for the causal interaction details that the original automata net-
work contains. It is rather a revision of the original interaction
graph that provides a much more precise, probabilistic account-
ing of causal dynamics and can be conditioned on different
input assumptions with the conditional effective graph. There-
fore, the loss of specific causal detail yields a powerful approach

for analysts who want to identify the most effective interven-
tion strategies, those most likely to steer dynamics to desirable
behavior.

Other methods have been proposed to integrate structure
and dynamics into enhanced network representations. The gen-
eral idea is to capture all of the possible roles that variables
and interactions play in the logic of automata networks with
additional formalism such as hyperedges (48) or distinct node
types for variable states (49). The removal of redundancy via
Boolean minimization can also be used to obtain parsimonious
enhanced network representations, as shown in previous work
(17). While these methods can preserve all possible causal inter-
actions, even the rarest ones, they increase the complexity of
the network representation. In contrast, the effective graph is a
directed, weighted graph with a single node type, which is sim-
pler and more amenable to the well-known graph-theoretical
analysis and methods of network science (50). Moreover, the
node- and edge-level effectiveness parameters are directly inter-
pretable and provide an aggregate but accurate quantification of
the causal pathways that are of greater interest for analysis and
intervention in biochemical networks.

Without additional knowledge, our probabilistic characteriza-
tion first assumes a uniform distribution over the likelihood of
all input-state combinations to a given automaton. While this
assumption is valid for automata in isolation, the presence of
a biologically relevant subset of states or the convergence of
dynamics onto attractors can alter the distribution of input states.
The conditional effective graph allows us to explore such distinct
input assumptions—as we do to study the causal roles of specific
drugs in the cellular processes involved in ER+ breast cancer. It
also provides a promising direction for future work toward inte-
grating the dynamically evolving likelihood of input states into a
temporal effective graph.

Because we are interested in studying the (ontogenetic)
dynamics of specific biochemical regulation systems, we focus
on dynamical perturbations that change the state of biochem-
ical variables. In future work, the effective graph is likely to
be very useful to study the impact of structural perturbations,
such as edge deletions or changes in logical transition rules (14).
Indeed, one would expect greater dynamical disruptions from
structural perturbations to effective pathways than to redun-
dant pathways (20). Thus, our methodology can also be a tool
to study the robustness and evolvability of function in biochem-
ical networks—including developmental and disease control—
especially in synergy with methods that hitherto have used only
the original interaction graph (1, 38, 42, 43).

To demonstrate that the effective graph is useful in designing
interventions in a specific systems biology model of development,
disease, and biochemical regulation, we focus on the analysis
of a small BN model of flower development, A. thaliana, as
well as a large BN model of signal transduction in a model of
ER+ breast cancer. In these models, the effective graph allows
us to demonstrate how different biochemical molecules or sig-
nals control dynamics. Whereas existing methods can identify
driver variables that control dynamics, we show that by remov-
ing dynamical redundancy, the effective graph not only can help
identify a more precise (smaller) set of driver variables but can
also show how these variables function. For instance, our method
distinguishes between an autoregulator gene (WUS ) that is only
needed to control itself and a master regulator gene (LFY ) that
controls most of the A. thaliana network. This enhanced explain-
ability can also be used to reveal alternative, actionable control
strategies, such as using AP1 or EMF1 instead of TFL1 or LFY
to control the Thaliana model.

Similarly, the effective graph of the ER+ breast cancer model
allows us to understand why and how some PI3K inhibitor drugs
are more effective than others at controlling apoptosis or growth.
Specifically, the methodology provides an analytical explanation
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of the causal relationships that arise in the macrolevel network
dynamics rather than observations from Monte Carlo simula-
tions. This allows us to show analytically how Fulvestrant syn-
ergizes with Alpelisib to best control the ER+ cancer cell line
model, as well as why several drugs in the model are completely
redundant. Such accurate explanations of how control interven-
tions propagate throughout a biochemical system are important
for the design of advanced disease therapeutics (39). Indeed,
explainability is an important feature to derive actionable com-
plex systems models in biomedicine and elsewhere. It can lead
not only to model refinement (for example, by testing and poten-
tially removing interactions predicted to be redundant) but also,
to a deeper understanding of how causal, nonlinear, microlevel
interactions integrate to define macrolevel biological functions.
Our approach thus enhances understanding of multilevel com-
plexity in biochemical regulation and multivariate dynamical
systems at large.

Data and Code Availability
All simulations and data used to support the findings of this
study are freely available in the CANA package (31) or the Cell
Collective (9).

Data Availability. All study data are included in the article and/or
SI Appendix.
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