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Abstract In weighted graphs the shortest path between two nodes is often reached
through an indirect path, out of all possible connections, leading to structural redun-
dancies which play key roles in the dynamics and evolution of complex networks.
We have previously developed a parameter-free, algebraically-principled method-
ology to uncover such redundancy and reveal the distance backbone of weighted
graphs, which has been shown to be important in transmission dynamics, inference
of important paths, and quantifying the robustness of networks. However, themethod
was developed for undirected graphs. Here we expand this methodology to weighted
directed graphs and study the redundancy and robustness found in nine networks
ranging from social, biomedical, and technical systems. We found that similarly to
undirected graphs, directed graphs in general also contain a large amount of redun-
dancy, as measured by the size of their (directed) distance backbone. Our methodol-
ogy adds an additional tool to the principled sparsification of complex networks and
the measure of their robustness.
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1 Introduction

Networks are a canonical method to model complex multivariate interactions and
have been proven useful in the study of a variety of problems, such as social inter-
action and human mobility to predicting epidemic spreading [6, 16]. and modeling
biochemical networks to predict the onset of diseases [8, 12]. Thismodeling approach
allows for a shift from the traditional scientific focus on the (reductionist) study of
things (e.g., animals or proteins), to the study of system-wide interactions among
these things, such as friendships among animals, or bonding among proteins. In net-
work science, typically, these multivariate interactions are represented as edges that
connect variables as nodes in a graph. In addition, networks built to represent real-
world complex systems often denote variable interactionwith a weight that is propor-
tional to the strength of interaction between nodes, such as a proximity (similarity)
or a distance (dissimilarity). For instance, edge weights can represent the probability
of interaction between genes [8], similarity between concepts in a knowledge space
[10], or a measure of how much time two individuals spent together in close vicinity
[9]. In its simplest form, edgeweights are non-directed,meaning interactions between
nodes are symmetric. This is especially the case when distance and shortest paths
between nodes are relevant for analysis—e.g. inferring the likelihood that a person
infects another in a population under epidemic spread—because distance measures
are by default symmetric (in addition to being non-negative and anti-reflexive [26]).

Redundancy is considered a fundamental aspect in the evolution of complex sys-
tems [7].Distinct aspects of the phenomenon have been shown to greatly contribute to
our understanding of network dynamics, controllability, and robustness [13, 14, 24].
In particular, we have shown that most networks where edges represent distance (or
dissimilarity) contain large amounts of topological redundancy in computing shortest
paths, which can be identified through our algebraically-principled and parameter-
free distance backbone [24]. This means our method differs from other backbones by
requiring no tunning parameter, null model comparisons, orMonte Carlo approxima-
tions. However, even though distance is typically considered to be symmetric [11],
many real-world complex systems are best modeled by directed, weighted graphs.
Indeed, asymmetric interactions have been to shown to be important in a variety of
domains, ranging from unreciprocated friendships [2], food-webs and host-parasite
ecological networks [15], to designing smarter urban traffic and cities [1, 22].

Here, ourmain contribution is the extensionof the distancebackbonemethodology
to directed weighted graphs. Specifically, we build upon the concepts of transitive
and distance closure for undirected weighted graphs [26] to identify a subgraph
whose edges do not break a generalized triangle inequality and which are sufficient
to compute all shortest directed paths. In other words, we obtain a directed distance
backbone that preserves the distribution of shortest paths in directedweighted graphs.
This in turn allows us to quantify both the structural redundancy of such networks
and their robustness to random attacks. Real-world examples also show preliminary
results that having directed edges yields a larger distance backbone than it does for
undirected graphs.
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2 Closures in Complex Networks

In social networks, indirect associations are often exemplified as “the friend of my
friend is also my friend”. These indirect associations can be described in a graph
G(X), defined on the set of nodes X , in terms of the transitive and distance closures.
Transitive closures assume edge weights to measure a similarity while distance clo-
sures assume weights to be a dissimilarity between nodes [26]. The formalism for
closures in weighted undirected networks has been introduced in Simas et al. [24].
We revise this mathematical construction in this section and, in Sect. 3, we relax
the symmetry condition previously considered while showing that the formalism of
closures in complex networks is applicable to both undirected and directed networks.

2.1 Transitive Closure

The strength of interactions between the nodes xi ∈ X can be measured by a prox-
imity graph, P(X). This is a reflexive network with edges weights pi j ∈ [0, 1], a
continuous range of values, with pii = 1. Transitivity is computed via the composi-
tion of generalized, weighted logical operators. These are extensions of the binary
logic operators, derived from probabilistic metric spaces and fuzzy logic, and are
called triangular norms and conorms [17, 24, 26].

A triangular norm (t-norm) is a generalized logical conjunction given by the opera-
tion∧: [0, 1] × [0, 1] → [0, 1]. It satisfies the properties of commutativity (p ∧ q =
q ∧ p), associativity (p ∧ (q ∧ w) = (p ∧ q) ∧ w), monotonicity (p ∧ q ≤ w ∧ v

implies p ≤ w and q ≤ v ), and having 1 as its identity element (p ∧ 1 = p). Sim-
ilarly, a triangular conorm (t-conorm) is a generalized logical disjunction given by
the operation∨ : [0, 1] × [0, 1] → [0, 1]. It is also commutative, associative, mono-
tonic, but has 0 as its identity element (p ∨ 0 = p). Combining them gives us the
compositions of P with itself as

Pη = P ◦ Pη−1 ⇐⇒ p(η)

i j = ∨
k

(
pik ∧ p(η−1)

k j

)
, (1)

considering η ∈ Z ≥ 2 and P1 = P . This leads to the transitive closure of P(X)

given by

PT (X) =
κ⋃

η=1

Pη ⇐⇒ pTi j = pi j ∨ p(2)
k j ∨ · · · ∨ p(κ−1)

i j ∨ p(κ)
i j . (2)

For general t-norms and t-conorms the closure is reached as κ → ∞. But with
proximity graphs, as long as ∧ ≡ min, the closure PT (X) converges for a finite
κ no larger than the graph diameter [17, 26]. The adjacency matrix Pη(X) measures
the proximity for paths of size η, while the transitive closure PT (X) accounts for the
strongest proximity for paths up to size κ .
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We say that a proximity graph is transitive with respect to the algebraic structure
([0, 1],∨,∧) if for every weighted edge pi j in the graph we have:

pi j ≥ ∨
k
(pik ∧ pkj ) (3)

for any node xk ∈ X . By construction, all edges of PT (X) obey this generalized
transitivity constraint, while only a subset of edges of P(X) typically do. In the
context of the generalized transitivity criterion given by Eq.3, fully transitive graphs
denote a similarity multivariate relation, whereas graphs that break transitivity for at
least one edge denote a proximity relation [17].

For connected, undirected graphs, this leads to a closure where pTi j > 0 for all xi
and x j in X , i.e. a complete or fully connected graph. Unfortunately, this does not
generalize for directed graphs, where there can be nodes that only have outwards
connections, and therefore can never be reached from other nodes.

2.2 Distance Closure

In network science, we often need to compute shortest paths on graphs to infer the
(direct and indirect) influence of variables on one another. This requires casting the
network as a distance (or dissimilarity) graphs, D(X) on the set of node variables
X . These graphs have non-negative weights, i.e. adjacency matrix elements di j ∈
[0,∞), and are anti-reflexive: dii = 0. They are also isomorphic to proximity graphs
[26] via a strictly monotonic decreasing map ϕ: [0, 1] → [0,∞) constrained by:

f
k
{g(ϕ(pik), ϕ(pkj ))} = ϕ(∨

k
(pik ∧ pkj )) ∀xi , x j , xk ∈ X, (4)

where f and g are isomorphic operations to ∧ and ∨, respectively, in the sense that
they are associative, commutative, monotonic, and having identity elements given
by ϕ(0) → ∞ for f and ϕ(1) = 0 for g. Due to this construction, g and f are named
triangular distance norm (td-norm) and conorm (td-conorm), respectively [26].

Though an infinite number of maps satisfy the isomorphism, the simplest, which
we use here unless otherwise noted, is the familiar distance function:

di j = ϕ(pi j ) = 1

pi j
− 1, (5)

that easily converts between proximity P(X) and distance D(X) graphs. In addition
to being non-negative and anti-reflexive, distance measures are typically symmetri-
cal, and if transitive, are also known as metric [11].

Equation (4) allows us to study transitivity of distance graphs by establishing an
isomorphism with transitive closures of proximity graphs. Thus, the distance closure
DT (X) is obtained via compositions of f and g:
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d(η)

i j = f
k
g

(
dik, d

(η−1)
k j

)
& dT

i j = f
(
di j , d

(2)
i j , . . . , d(κ−1)

i j , d(κ)
i j

)
, (6)

where, because of the isomorphism, κ is the same as for the transitive closure (Eq.2).
The adjacency matrix Dη(X) measures the shortest distance for paths including η

connections, while the distance closure DT (X) accounts for the shortest path length
up to κ links. For distance graphs, the transitivity criterion is defined by each algebraic
structure ([0,∞), f, g):

di j ≤ f
k
g(dik, dkj ) ∀xi , x j , xk ∈ X. (7)

The distance closure DT (X) is transitive by construction, but generally only a subset
of edges D(X) obey Eq. (7).

2.3 Shortest-Path, Metric and Ultrametric Closures

The general transitive and distance closures of Sects. 2.1 and 2.2 yield a number of
well-known cases used in network science [24, 26]. When f ≡ min (or ∨ ≡ max
in proximity graphs), we have the large class of shortest-path closures, DT,g(X),
for any distance function g (or ∧ in proximity graphs), as the closure selects the
minimum path with length given by g. This leads to a generalized triangle inequality
[24] as a transitivity criterion:

di j ≤ g(dik, dkj ) ∀xi , x j , xk ∈ X. (8)

For instance, when g ≡ +, we obtain the familiarmetric closure, DT,m(X), where
the length of the path is obtained by summing the distance edge weights. Similarly,
when g ≡ max, we instead obtain the ultrametric closure, DT,u , where the length of
the path is obtained by the maximum distance weight in path (the weakest link).

Many other shortest-path distance closures—and thus different path length mea-
sures and transitivity criteria—can be usefully employed in network science [26].
Here we exemplify the approach with these twowell-known cases because themetric
closure is the most common way to compute shortest path on weighted graphs, and
the ultra-metric closure is the lower bound of distance closures [24].

2.4 Distance Backbone Subgraph

The distance backbone Bg(X) of a distance graph D(X) is the invariant subgraph
under a shortest-path distance closure DT,g(X) with f ≡ min and some g [24]. It is
sufficient to compute all shortest paths in D(X) given a path length measure g. The



140 F. X. Costa et al.

distance backbone is invariant because its edges are the ones that obey the generalized
triangle inequality (Eq. 8) and are thus called triangular edges. That is, the distance
backbone is defined by edges that have the same weight in the shortest-path closure:

bgi j =
{
di j , if di j = dT,g

i j

∞, if di j > dT,g
i j

, ∀xi , x j ∈ X, (9)

where dT,g
i j are the adjacency matrix weights of the distance closure graph DT,g(X).

The edges that break the generalized triangle inequality are called semi-triangular
and are not on the backbone, i.e. bgi j = ∞. If (and only if) an edge between xi and x j

is semi-triangular (i.e., not present on the backbone), there exists a shorter indirect
path (i.e., which is present on the backbone) connecting them via some xk [24].

Themetric (g ≡ +) and ultrametric (g ≡ max) backbones of distance graph D(X)

are denoted by Bm(X) and Bu(X), respectively. Similarly, edges on these backbones
are called metric and ultrametric, while those off are known as semi-metric and
semi-ultrametric, respectively [24].

3 Directed Distance Backbone

Here we extend the concept of distance backbone by relaxing the symmetry con-
straint of distance functions, thus considering distance graphs D(X)where di j �= d ji ,
or directed distance graphs. As summarized above, distance backbones exist when
enforcing a generalized triangle inequality (Eq. 8) as a transitive closure criterion.
This is the same as computing all shortest paths of D(X) using a measure of path
length determined by g.

Computation of the all pairs shortest path problem (APSP) for undirectedweighted
graphs with g ≡ + is straightforward using the Dijkstra algorithm [5] (though it can
also be computed with the distance product directly via Eqs. (2) and (6) [26, 28]).
Since all shortest-path distance closures are based on setting f ≡ min in Eqs. (6)
and (7), they can also be computed as a APSP problem by adjusting the chosen
algorithm with a different path length measure for each g used, such as g ≡ max for
the ultrametric backbone [24].

We also know that the standard triangle inequality, Eq. (8) with g ≡ +, is valid
for directed distances [18]. This way, the APSP of directed distance graphs based on
this transitivity criterion can also be computed via the Dijkstra algorithm [5] or the
distance product [28]. Indeed, the methodology of closures in complex networks is
found to be applicable to both undirected and directed weighted graphs. The latter
is shown in the real world examples of Sect. 4.
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3.1 Redundancy and Robustness

The fraction of edges in the backbone

τ g(X) = |Bg(X)|
|D(X)| = |{di j : di j = dT,g

i j }|
|{di j }| ∀xi ,x j∈X :i �= j (10)

measures the proportion of triangular (or topologically invariant) edges, while its
complement σ(X) = 1 − τ(X) quantifies the proportion of semi-triangular edges.
The latter measures the structural redundancy of complex networks given a specific
transitivity criterion (Eq.8). That is, the edges that are redundant for shortest-path
computation given the path lengthmeasure g chosen. Note that due to the introducing
of directionality, now τ g must be computed for all entries of the adjacency matrix,
and not just for the upper or lower diagonal as previously done for the undirected
case [24].

If a network has a small backbone (small τ g), most of its edges are semi-triangular
and do not affect the shortest path distribution. This way, random attacks would most
likely not interfere with the backbone itself, a robustness1 that can be inferred from
the measure of topological redundancy σ g(X).

4 Experimental Analysis

Now we investigate the backbone of nine real-world networks pertaining to three
distinct domains: biomedical, social, and man-made technological systems. Here
we discuss in more detail the backbones of a giraffe social network [3], the U.S
airport transportation system [23, 24], and the bike-sharing system of the City of
London [21]. Additional details for this and the remaining networks can be found in
the accompanying digital supplemental material. Descriptive data for each directed
weighted graph, and the size of their respective metric and ultrametric backbone are
shown in Table 1.

4.1 Giraffe Socialization

Evidence suggests that giraffes have complex social structures, with females having
social preferences and suggestive that adult giraffes have friendships beyond only
mother-child interactions [3]. We analyze a network of social interaction of captive
giraffes at the San Diego Zoo’s Wild Animal Park. The original observational study
included 6 adult female Rothschild’s giraffe (Giraffa camelopardalis) housed in

1 A finer characterization of robustness in terms of edge properties [25] in the case of directed
graphs is left for future work.

https://casci.binghamton.edu/publications/CN22-dbdn.php
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Table 1 Topological invariance of weighted directed graphs modeling real-world systems

Network |X | |di �= j | δ τm τ u τ u/τm

Biomedical Co-morbidity
risk

95 8,930 1.0 47.44 2.17 4.57

Drug
interaction

412 2,966 1.75e-2 59.00 40.49 68.63

Species-
Species
inter.

10,578 18,529 1.66e-4 99.47 99.46 99.99

Social Giraffe
socialization

6 30 1.0 76.67 30.00 39.13

Telephone calls 322 609 5.89e-3 91.63 84.89 92.64

Technological Bicycle trips
(min. 7)

725 53,118 0.1 59.53 2.75 4.62

U.S. Airports
2006

1,075 18,906 1.64e-2 27.59 18.99 68.83

Water pipes 1,836 2,351 6.98e-4 99.62 95.83 96.20

The number of nodes |X | and edges |di �= j | are used to compute the network density δ. The relative
size of the metric (τm ) and ultrametric (τ u ) backbones are presented as percentages

a single herd. In the study, they were observed 5 mornings a week for a total of
300d, and the behavior of each subject was recorded for a 20-min focal sample in
random order. Data on nearest neighbor and proximity (measured at 2 neck lengths)
were collected at 1-min intervals for the focal subject. Affiliative social interactions
involving the focal subject were recorded and included: approach, necking, head rub,
bumping, social exam, muzzle, co-feed, and sentinel (details in [3]). In total, 600h
of observation time and 2,748 affiliative interactions were observed.

In the social network directed edge weights represent the frequency in which
giraffe xi interacts with giraffe x j as a measure of similarity pi j (see Fig. 1a). This
is a small network containing only 6 nodes and fully connected with 30 directed
edges (density δ = 1.0). The metric backbone consists of 23 edges (τm = 76.7%)
and the ultrametric of only 9 (τ u = 30%) edges. Interestingly, the metric backbone
completely removes the edge between giraffes Yanahmah and Chokolati, both the
oldest giraffes in the herd. In the metric backbone the mother-daughter relationships
are also kept between Yanahman-Ykeke and Chokolati-Chinde. In other words, and
as previously noted for human contact networks [9], the backbone preserves the
hierarchical structure of social networks.

4.2 London Bike-Sharing Trips

The SARS-Cov-2 pandemic caused unprecedented shifts in urban mobility with
bike-share systems having a significant increased in demand in several major capitals
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Fig. 1 Giraffe socialization network in the San Diego Zoo [3]. a Directed distance graph; bmetric
backbone subgraph; and c ultrametric backbone subgraph. The original distance graph contains 30
edges, while the metric backbone contains 23 (76.7%) and the ultrametric backbone only 9 (30%)
edges. Plotted with Gephi [4]

[19, 27].We analyze the City of London’s bike-sharing system, available through the
Transport for London Open Data API and previously analyzed in Munoz-Mendez et
al. [21]. Data contains records for each unique bicycle and their rental transactions,
including timestamped information on which bike-sharing station it was picked up
and then returned in a network of 770 stations through the city. A month’s worth
of bike-sharing transactions is analyzed, from June to July 2014. Transactions that
started or ended in a repair station, as well as stations with too few transactions,
were discarded. This means we only included stations that accounted for 75% of all
transactions (i.e., a minimum of 7 monthly trips per station), which in turn resulted
in 726 bike-sharing stations and 948,339 bike-sharing transactions.

In this network a node represents a bike-sharing station, xi , and edges areweighted
by the average trip duration between stations as a directed distance, di j . This net-
work has 725 nodes and 53,118 nodes (density δ = 0.1). The metric and ultrametric
backbones consist of τm = 59.53% and τ u = 2.75%, respectively, of the directed
network. Along with the co-morbidity risk network, the bike sharing network has
one of the largest differences in the sizes of the metric to the ultrametric backbone
(τ u/τm = 4.6%). This means that a directed attack on the metric backbone will have
a small impact on ultrametric backbone and thus in the distribution of shortest paths
[24]. In other words, the network of the bike-sharing system for the City of London
is very robust to directed attacks, translated to the possible closure of bike-sharing
stations or street changes that cyclists use (Fig. 2).

4.3 U.S. Airport Transportation

This network is the domestic nonstop segment of the U.S. airport transportation sys-
tem for the year 2006, retrieved from http://www.transtats.bts.gov. Each node is an
airport, and edgeweights are the normalized number of passengers traveling between
two airport-nodes. This networkwas analyzed in Simas et al. [24] and is a reconstruc-

https://api.tfl.gov.uk/
http://www.transtats.bts.gov
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Fig. 2 Domestic nonstop segment of the U.S. airport transportation system [23]. (a) Undirected
distance graph with its respective (b) metric, and (c) ultrametric backbone subgraphs [24]. (d)
Directed distance graph with its respective (e) metric, and (f) ultrametric backbone subgraphs.
The original directed (undirected) distance graph contains 18,906 (11,973) edges. From those,
27.59% (16.14%) are in the metric backbone, and 18.99% (8.98%) in the ultrametric backbone.
The difference in number of edges between the undirected and directed representation comes from
the fact that 5040 (26.65%) of all flights are only in one direction. Network plotted with Gephi [4]

tion of the one used by Serrano et al. [23]. Differently from previous work, however,
here we consider directionality in the flow of passengers as 5,040 (approximately
27%) of all flights are only in one direction In other words, flight routes may include
stops in multiple airports from initial to final destination, and not necessarily contain
a direct return to the initial departure airport. Airports in theAmerican Samoa, Guam,
Northern Marianas, and Trust Territories of the Pacific Islands have been removed
from the analysis. This is a large but relatively sparse network with 1075 nodes and
18,906 edges (density δ =1.64e−2). The relative size of the metric and ultrametric
backbone are τm = 27.59% and τ u = 18.99%, respectively, (see Table 1).
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5 Discussion

Directionality and strength of interactions are relevant properties of real complex
networks. The structure of such networks can be reduced in a principled manner,
while preserving the entire distribution of shortest paths (for a given length measure
g), with the computation of the distance backbone.

In the nine networks we analyzed, we found that the size of the metric back-
bone ranges from 27.59 to 99.6%—three networks have metric backbones above
92% of the distance graph. Ultrametric backbones range from 2.17 to 99.5%, with
two networks having ultrametric backbones above 95.8%. In contrast, for undirected
graphs studied in Simas et al. [24] the metric (ultrametric) backbones range from
1.75 to 83.59% (0.2–78.45%), which shows a substantial increase in the size of back-
bones due to directionality. A direct comparison can be made for the U.S. airports
network. Its undirected representation has a relative size of the metric and ultramet-
ric backbone of τm = 16.14% and τ u = 8.98%, respectively [24]. Here, we found
that the relative size of the metric and ultrametric backbone are τm = 27.59% and
τ u = 18.99%, respectively (see Table 1). This increase is likely due to the fact that
the closure for directed graphs does not lead to a complete graph—unlike what hap-
pens to connected undirected graphs. In other words, having many connections in
only one direction (approximately 27% in this case) can make them necessary for
shortest paths irrespective of the edge weight, which emphasized the importance of
directionality when studying real-world networks. The large difference between the
size of backbones in directed and undirected graphs warrants future studies of the
effect of directionality vis a vis various topological parameters.

The metric and ultrametric backbones of the networks we analyzed (Table 1)
exemplify networks which are robust to random edge removal, as is the case of the
comorbidity risk and bicycle trips networks, for having a smaller backbone (small
τ g). On the other hand, the species-species interaction network and water pipes
networks have a large τ g and little redundancy. That is, the backbone is most of the
network, suggesting that they mostly contain necessary interaction information, or
were perhaps optimized tominimize the cost of implementing redundant edges, being
susceptible to random edge removal or failure. In the case of the water pipe network,
little redundancy is expected because its distanceweights represent an actual physical
distance between nodes, which must conform to a naturally metric topology. Thus,
it is an expected result that its metric backbone is almost the entire distance graph
(99.6%). This highlights the fact that semi-metric (and semi-triangular) behavior
can only occur in high-dimensional spaces [24]. In contrast, the metric backbone
of the passenger traffic between U.S. airports is only 27.59%, making its shortest
path distribution very robust to random attacks, as the odds of randomly removing
semi-metric edges are much higher than removing metric ones that contribute to the
backbone. The precise impact in the shortest path distribution for those networks
requires the computation of edge distortion [24, 25] and is left for future work.
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6 Conclusion

We introduced directionality to study shortest-path redundancy in weighted directed
graphs via a novel directed distance backbone subgraph, the computation of which
we showed to be feasible. This consideration brings improvement over other spar-
sification methods that considers only undirected networks [20, 24] or that treat
incoming and outgoing edges independently [23]. We focused on the metric (where
g ≡ +) and the ultrametric (where g ≡ max) backbones, but the methodology is
applicable for any length measure g, allowing other backbones to be considered in
the future.

We applied the methodology to study redundancy of a variety of real-world
weighted directed graphs modeling biomedical, social, and technological systems.
The size of the metric (ultrametric) backbone ranges from 27 to 99% (2–99%), but
is typically much smaller than the original distance graph. However, the size of the
directed backbones observed are larger than the undirected backbones previously
reported, emphasizing the difference in shortest-path robustness for the two different
classes of graphs. The comparison using the same underlying U.S. airports network
is particularly illuminating. We found that both the metric and the ultrametric back-
bone for the directed graph are larger than the ones for the undirected version—71%
and 112%, respectively. Thus, asymmetric airline seat capacity between cities (27%
of all connections exist only in one direction) has a large impact on shortest paths
between them. This exemplifies the importance of our contribution in the study of
distance backbones for directed networks, which will lead to a study with additional
networks in the future.

Themethodology further allows us to infer the robustness of shortest path distribu-
tions to random attack, via the relative size of the metric and ultrametric backbones.
This can aid the design of more resilient social and technological systems or the iden-
tification of key evolutionary properties in biomedical systems.We are confident that
the study of directed distance backbones can help the understanding and control of
a variety of complex multivariate systems where both strength and directionality of
interactions is key.
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