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The ability to map causal interactions underlying genetic control and cellular sig-
nalling has led to increasingly accurate models of the complex biochemical networks
that regulate cellular function [10, 9, 1]. However, the traditional representation of bio-
chemical networks as static and binary interaction graphs fails to accurately represent
an important dynamical feature of these multivariate systems: some pathways propa-
gate control signals much more effectively than others [5] (see Fig. 1A & B). Such
heterogeneity of dynamical interactions reflects canalization, as the system is robust to
interventions in redundant pathways, but responsive to interventions in effective path-
ways. The simplest way to model such causal, interdependent nonlinear dynamics is
with multivariate, discrete dynamical systems; for instance, Boolean Networks (BN)
are canonical models of complex systems which exhibit a wide range of dynamical
behaviors [2]. BN provide a convenient modelling framework to explore general prop-
erties of complex systems, such as self-organization, criticality, causality, canalization,
robustness and evolvability [10, 8, 6, 11].

To capture the nonlinear logical redundancy present in biochemical network regu-
lation, signalling, and control, we present the effective graph. The effective graph is a
weighted, directed graph that statistically integrates all dynamical redundancy present
in the BN dynamics, thus revealing the most important interactions in determining state-
transitions, as well as very redundant pathways. In this talk we present a summary of
key results derived from more than 40 systems biology models analyzed, including that:
i) redundant pathways are prevalent in biological models of biochemical regulation (see
Fig. 1D & E); ii) the effective graph provides a statistical but precise characterization
of multivariate dynamics in a causal graph form (see Fig. 1B & C); and iii) the effective
graph provides an accurate explanation of how perturbation and control signals propa-
gate in biochemical regulation, such as those induced by drug therapies on Cancer. See
Fig. 1C, and note how cancer drugs (purple nodes) lose their pathway to Apoptosis (cell
death; green nodes), a desired control outcome in this ER+ breast cancer model. Over-
all, our results indicate that the effective graph provides an enriched description of the
structure and dynamics of networked multivariate causal interactions. We demonstrate
that it improves explainability, prediction, and control of complex dynamical systems
in general, and biochemical regulation in particular.

All simulations and code to support the findings are freely available in the CANA
python package [4].
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Fig. 1. A. The interaction graph for the Arabidopsis Thaliana BN [3]. B. The effective graph for
the Arabidopsis Thaliana BN, in which edge thickness denotes effectiveness, with fully canalized
edges shown in dashed red. Node color intensity denotes the node effective out-degree; green
nodes denote cases of null effective out-degree. C. The effective graph for the BN model of
ER+ breast cancer [12], in which edge thickness denotes its effectiveness, thresholded to show
only effectiveness edges ei j > 0.4 for ei j ∈ [0,1]. D. Ratio of the number of weakly connected
components to network size in relation to the effective edge threshold for a variety of biochemical
BN. The ER+ breast cancer (orange), leukemia (blue), and Arabidopsis thaliana (blue) networks
shown highlighted. E. Edge effectiveness of the 240 incoming edges (interactions) to 40 automata
with degree k = 6 in Cell Collective [7] models (green) compared to a bias-matched sample of
random Boolean automata (pink).
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12. Zañudo, J., Scaltriti, M., Albert, R.: A network modeling approach to elucidate drug resis-
tance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Con-
vergence 1(1) (2017)


