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Networks are a common method to model multivariate interactions in a variety
of complex systems found in nature and society. The interactions captured by net-
works can include a multitude of complex phenomena occurring at various levels of
observation and intensity, which are difficult to disentangle automatically. For instance,
functionally-relevant gene modules in a network of gene interactions, or disease-related
terminology in networks derived from drug and symptom mentions in social media [2]
typically have overlapping clusters of widely varying size and strength. To address these
and other similar questions, a variety of community structure algorithms have have
been proposed in the literature [1, 7, 3]. However, most modularity algorithms seek an
optimal partition of the network where each node must belong to a module. This hard-
boundary assumption does not match the fluid phenomena often found in biomedical
complexity. Indeed, many genes are involved in different biochemical pathways de-
pending on their expression levels and which other biochemical species are present.
Hence, the same gene can participate in distinct modules. In these biomedical problems
it is more reasonable to assume that network variables can map to multiple, partially
overlapping functional communities. Thus, for biomedical applications of network sci-
ence there has been much recent interest in spectral, overlapping clustering methods
[9].

Here we propose a new spectral method to automatically extract overlapping clus-
ters from networks. It is based on two steps: 1) the Singular Value Decomposition
(SVD) of weighted graph adjacency matrices, in a process akin to Principal Component
Analysis (PCA) of gene expression data [10], and 2) automatic extraction of overlap-
ping modules using information theory and a polar coordinate projection of data onto
singular vector (or component) subspaces. In the first step, when the original network is
a bipartite graph relating two distinct sets of variables (e.g. genes vs assays in time, or
disease codes vs social media user timelines), we compute the SVD of the bipartite adja-
cency matrix. If the network is a weighted graph of a single set of variables (e.g. genes),
we perform the PCA of the (covariance-normalized) adjacency matrix (see [10] for the
difference between SVD and PCA). Fig. 1A depicts the eigenvector variance spectrum
of a Drosophila gene interaction network obtained via PCA, where the first eigenvector
(or component) explains 20% of the variance in the gene co-expression data, and is as-



sociated with a large module involving most genes and their regular expression patterns
(e.g. cell division, housekeeping and cell cycle).

In functional analysis we are most interested in biochemical processes involving
smaller modules which have specific regulatory functions beyond the regular cell oper-
ations captured by the first component [8]. Thus, in the second step of the method, we
target subsets of lower components. Fig. 1B depicts a biplot of all genes in the network
projected as points onto components 2 and 3 of the spectrum. The majority of points
is (randomly) projected at the origin of the biplot, showing that they are not correlated
with the phenomena captured by either component. Therefore, we want to identify those
points (genes) that most protrude and cluster away from the origin, as those are most
correlated with the target components. To do so, we transform the Cartesian coordinates
of every point to polar coordinates (see Fig. 1D), apply a moving window over the range
of radiuses, and compute the Shannon entropy of the distribution of points over angle
bins in each radius window. We use overlapping bins (or fuzzy intervals [5]) for both
radiuses and angles, meaning that a node at a particular polar coordinate can contribute
to more than one angle and radius bin simultaneously (see Fig. 1C & E, respectively).

Computing the Shannon entropy (see red line in Fig. 1D) allows us to track when the
distribution of points in polar angle bins transitions from a random to a more structured
arrangement. Because points near the origin (radius close to zero) are uncorrelated with
the components of interest, the distribution of polar angles tends to be uniformly ran-
dom, as seen in Fig. 1B,D. As the radius increases, points tend to cluster near specific
angles, leading to lower Shannon entropy of the angle distribution. Thus, the goal of
the second step of the algorithm is to identify the radius where important transitions in
Shannon entropy occur, especially where the distribution of polar angles moves away
from a uniform distribution (see blue lines in Fig. 1B,D). Naturally, several entropy
transitions may occur, as some clusters are more correlated with components of interest
than others—and thus have a higher radius. In other words, identifying the best clusters
becomes a multi-objective optimization problem. Several measures can be used to opti-
mize, but we exemplify the method with the rank-sum of radius and entropy to identify
the radiuses that maximize the number of points selected while simultaneously mini-
mizing the entropy value. Once a radius is selected, we retrieve only the points that lay
beyond the circle it defines. The distinct clusters are then formed by the circle segments
that contain similar polar angles; see red polygon in Fig. 1B with radius ≥ 4 selected
by rank-sum. In our example, the red module corresponds to genes involved in protein
regulation via the proteasome complex, as characterized via gene ontology enrichment
analysis (GOEA) [6]. Finally, it important to stress that the clusters thus identified, con-
tain genes that may overlap with clusters found in other component subspaces. In other
words, the same network nodes can contribute to overlapping modules associated with
distinct phenomena.

In the talk, we will discuss variations of the entropy and multi-objective optimiza-
tion measures, and apply the method to data from four examples: (i) synthetic networks;
(ii) a gene interaction network from transcriptomic data (RNAseq) from Drosophila in-
testinal cells (Fig. 1); (iii) a knowledge network of drug and symptom terms extracted
from social media user timelines [2]; and (iv) a workspace social interaction network
collected using radio-frequency identification (RFID) [4].
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Fig. 1. Gene interaction network of insect (Drosophila melanogaster) intestinal cells. A. Spec-
trum of PCA components of the gene interaction network adjacency matrix, ordered by propor-
tion of explained covariance. B. Projection of genes (network nodes) onto biplot of PCA compo-
nents 2 and 3. Two network modules are highlighted in red and orange. Blue circles shows the
minimum entropy window selected (also in D). C. Angle bins used in analysis, with width of
rw = 90 and overlap of ro = 45. Bins positioned at varying radiuses for easier visualization. D.
Radius (horizontal) and polar angle (vertical) of same points as in B (subspace of components
2 and 3). Red line and points show the normalized entropy values for each radius window com-
putation (θ w = 30, θ o = 15; rw = 1.0, ro = 0.1). Blue rectangle shows the minimum entropy
window selected (also in B). E. Radius bins used in analysis with width of θ w = 1 and overlap
of θ o = 0.5. F. Gene ontology enrichment analysis (GOEA) of the identified red module (see
B). Top 10 significant GO terms shown. G. Insect gene interaction network with red and orange
modules identified (also in B).
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